

GRAVITATION

Do you know Plattract you with a force

Yes, but it's too weak to be felt.

Force of attraction between them is gravitation and it is given by:

$$F = G \frac{Mm}{r^2}$$

G = Gravitational Constant

GRAVITATIONAL FORCE

Acceleration Due to Gravity

On the surface of earth

Effect of rotation of earth at latitude

$$g' = g - R\omega^2 \sin^2 \phi$$

At equator, $\phi = 90^{\circ}$, $g' - R\omega^2 = 9.78 \text{m/s}^2$

At poles, $\phi = 0$, $g' = g = 9.83 \text{ m/s}^2$

At height h from the surface of earth

$$g' = \frac{g}{\left(1 + \frac{h}{R}\right)^2} = g\left(1 - \frac{2h}{R}\right) \text{if } h << R$$

At depth d from the surface of earth

$$g' = g \left(1 - \frac{d}{R} \right)$$

$$g' = 0 \text{ if } d = R \text{ i.e., at centre of earth}$$

- At equator, effect of rotation of earth is maximum and value of g is minimum.
- At poles, effect of rotation of earth is zero and value of g is maximum.

Gravitation Field Strength

Gravitation field strength at a point in gravitational field is defined as:

$$\vec{E} = \frac{\vec{F}}{m} =$$
Gravitational force per unit mass.

Due to a point mass

$$E = \frac{GM}{r^2}$$
 (towards the mass)

or
$$E \propto \frac{1}{r^2}$$

Due to spherical shell

- Inside points, E_i = 0
- Just outside the surface, $E = \frac{GM}{R^2}$; R Radius of Sphere
- Outside Point, $E_0 = \frac{GM}{r^3}$; r Distance of centre from an external point
- On the surface E-r graph is discontinuous.

$$E_{ix} = \frac{GMx}{(R^2 + x^2)^{3/2}}$$
; At $x = 0$, $E = 0$ i.e., at centre

If
$$x \gg R$$
, $E = \frac{GM}{x^2}$

At
$$x \rightarrow \infty$$
, $E \rightarrow 0$

On the axis of a ring

At
$$x = 0$$
, $E = 0$ i.e., at centre

If x >> R, E = $\frac{GM}{x^2}$ i.e., ring behaves as a point mass

At
$$x \to \infty$$
, $E \to 0$; $E_{max} = \frac{2GM}{3\sqrt{3}R^2}$ at $x = \frac{R}{\sqrt{2}}$

Due to a solid sphere

- Inside points E_i = GM r
- At r = 0, E = 0 i.e. at centre
- At r = R, $E = \frac{GM}{R^2}$ i.e., on surface
- Outside points $E_0 = \frac{GM}{D^2}$ or $E_0 \propto \frac{1}{D^2}$
- At $r \rightarrow \infty$, $E \rightarrow 0$

All the planets move around the sun in elliptical orbits with sun at one of the focus, not at centre of orbit.

The Law of Areas

2nd Law

The line joining the sun and planet sweeps out equal areas in equal time.

$$\frac{dA}{dt} = \frac{L}{2m} = Constant$$

3rd Law The Law of Periods

The time period of revolution of a planet in its orbit around the sun is directly proportionally to the cube of semi - major axis of the elliptical path around the sun. $T^2 \propto a^3$

